
UDC 531.31 

RESONANCE MOTIONS IN AN ESSENTIALLY NONLINEAR 

SYSTEM CONTAINING STABLE ELEMENTS 

PMM Vol 40, @ 5, 1976, pp. 790-799 

L. D. AKULENKO 
(Moscow) 

(Received September 17, 1975) 

A perturbed rotary-oscillatory system with many degrees of freedom, sub- 
jected to periodic external forces is investigated. By successive approxi- 
mations with respect to a small parameter a resonance solution on the in- 
finite time interval is constructed and its Liapunov stability is considered. 

Calculations for an actual example of a system with three degrees of free- 

dom simulating the influence of a spinning unbalanced rotor on the found- 

ation, are carried out. 

L Statement of the problem, We examine a nonlinear system lead- 
ing to equations with rotating phase of the zrn 

a’ = / (t, a, q, 11, E) 
q:’ = o (a) + F (2, a, V, h, E) (1.1) 
I/’ = H (a) I1 i- g (t, a, $7 11, E) 

Here t E [to, m) is the independent variable (time), a E G, is quasi-static 
variable (energy or amplitude), $ E 190, oo) is the phase of the oscillations or of 

the rotations, 11 = (/zi, . . ., h,) is a stable vector, h E Gh, where Gh is some 

neighbourhood of the origin, e>O is a small parameter, e E 10, EJ. It is 

assumed that the right-hand side of system (1.1) satisfied the conditions: 

1) it is defined and real in the region indicated: 

2) the functions j, F and &’ are periodic in t and 9 with periods z and 

2n respectively , 
3) the frequency w (a) is nonnegative, and for certain relatively prime numbers 

m and n there exists the solution a* of the equation mo = nv (m > I), where 

v=2n/‘G b h frequency of the external forces; 

4) H (a*) is a stable matrix, i.e. , all r roots of the equation A (A) = 

det (H (a*) - Ih) = 0, where 1 is the unit matrix, satisfy the condition 

Re 3Lk (a*) < 3L0 < 0 (k = 1, . . ., r); 
5) it is continuous in t; in the region being examined the functions f, o, F and 

g have partial derivatives upto second order with respect to the rest of the arguments, 

while matrix H has a first-order partial derivative, all of which satisfy Lipschitz 

conditions with constants not depending on t 

6) the estimates 

739 
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j, F = 0 ( 1 11 ( -t 1 E I), g = 0 ( 1 Ir I2 -t I e I) 
(1.2) 

are valid. 

The nonlinear system Z’ = X (x) -k ef (t, 5, e), CC is a vector, reduces to 
a system of form (1.1) with estimates of a more special form for the right-hand side: 

f, F, g = O(lh I2 + I& I>* cc is a vector under the assumption that the generating 
system admits of a stable two-parameter family of rotary-oscillatory motions [l-3]. 

The author investigated such a system in [2]. Systems of type (1.1) were investigated 
in [l] by the averaging method and in [3] by the method of local integral manifolds. 
Here we pose and solve the problem of constructing individual resonance solutions of 

system (1.1) with estimates ( 1.2)on an unbounded time interval by the constructive 

scheme of successive approximations in the small parameter method [4] and we invest- 

igate the Liapunov stability of these solutions. 

2. Construction of a re!onance solutfon. A steady-state reson- 
ance solution of system (L 1) of form 3 n is constructed as the sum of a generating 

motion and a perturbing motion [2] 

a = a* -I- ex (t, E), ‘11: = (n / m) v (t - to) + cp + Ey (t, E) 

h = EZ (t, &) 
(2.1) 

Here, 2, Y, z are unknown periodic functions of t of period 1’ -= mx, (I, is a 
parameter (the phase constant). The substitution of (2.1) into (1.1) leads to a quasi- 
linear system in 5, Y, 2, whose periodic solution is constructed by successive approxi- 
mations of powers of E I27 4] 

Xi+1 = (j’J + (jhl) zi+l + e [(j&Xi + (j&)Yi + (jLf> zi + 

+ l/2 (je:‘) I- (jai> xizi + (f jh >Y. ,z, + V, (jh:l)Zi2 + I* (t, Xi, Yi, zi, 41 

Yl+i = 01’ (a*) ~i+i + (F,‘) + (Fh’) zi+l t- e [‘iz~‘n(a*) x:i2 + 
$ (FiE) Xi -I- (FaE) yi + (FXc)Zi + '12 (FEZ) 4. (Fah) Xizi + (2.2) 

+ (F$,) yizi + ‘/, (FM”) zi2 + F* (t, xi, Yi, Zi, e)I 

%+I = H (a*) zi+l + (gE’) -t e I(&) xi + (gk) yi + (&) zi -t 

+ l/2 (&IN) + l/2 (ghz”) zi2 -i H’ (a*) Xizi + g* (t,Xiy yi,Zi,e)I 
(i = 0, 1, 2...) 

Here an expression of the type (It’) signifies that the derivatives are computed for 
F,=O and for the generating solution: a = a*, 7c. = (n / m) v (t - to) -!- qoa 

II = 0; f*, F*, g* are known functions satisfying Lipschitz conditions in the vari- 
ables x, y, z, e with constants independent of t and vanishing identically at 

e = 0. 
It should be noted that the mentioned quasi-linear system of equations for Z, y, z 

has the form of system (2.2) in which the indices i + 1 and i have been dropped. 
In fact, after the substitution of expressions (2.1) into (1,l) , the expansion with respect 

to F. and the division by a -+ 0 , equations of form (2.2) follow as a consequence 
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of the assumptions made in (5) of Sect, 1 concerning the smoothness of the right-hand 
sides and on the basis of estimates (1.2). When the functions f and F have a quad- 
ratic estimate with respect to f2 [Z] as the function g does (see (1.2) ). the form 
of system (2.2) is simpler since the derivatives of type (fhf), (fir,), (fir,) and the ana- 
logous ones for function F identically equal zero, Integration at each step of the 
varrables “i+l and yicl is carried out explicitly and independently of the vector 
h. r+1* The investigation of the stability of the resonance solution (2.1) simplifies 

considerably (in comparison the one in Sect. 3 below), since it turns out that the vari- 

able h has no influence on the stability in the first approximation being examined 

PI. 
As the zero approximation we take the periodic solution of system (2.2) when 

e=O 

(2.3) 

y,, = B, -I- 0’ (a*) Ao (t .- GJ + 

c I@’ (a”) x0* + (FE’) + (Fh’) %I1 & = &I + 90” (t, cp) 
t 

Here rp, A o and B, are parameters selected so that the resulting solution is periodic, 
From the periodicity condition on x0 * follows an equation in the parameter Cp 

p (9) = i’ I(fC’) -t- (f/l’) H [k')ll 02 = 0 (2.4) 
0 

If cp* (mod 2n / n) is a real root of the transcendental Eq. (2.4), then the function 

x0 is periodic for any A O: including 

9 = 
A, = -[w'(a*)T]"l ~~'(u*)~~* +(~~')+(~~')z*]~~ (~'(u*)~(~) 

ii 

Forthe Ao indicated the function YO is periodic for any B, . As a result the 

periodic functions x0 and z. are completely determined, while the parameter 

B,, is found from the conditions of the periodicity of the first approximation resulting 
from (2.2) when I* f 0, F* = 0, g* G 0 
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YI = yo* + B, +- cy,* 

‘I** = ’ [k,“) x0 + (6%:) yO* + &he') 20 + ‘/z (g,s”) + l/2 (g,,:)zo2 + 
H’ (a*) xoz,l 

fl = (fh’) z1** + (fnLn) x0 + (f&Y yo* + (IhEn) ZrJ + ‘/2 (fe:‘) + 
(fah”) 2020 + (Ibh”) yo*zo + l/2 (f,,t”> zo2 

The parameter B. is determined from the periodicity condition on 51 under the 

condition that (c’* is a simple root of (2.4) 

B,= - &) \ fl (t) dt 
0 

(2.6) 

The constant A, is found from an analogous relation for Yi* 

y1* = Co’ (a”) Al (t - to) + \ [cd (a*) x1* + + O”(a*) 2; + (F,‘)z,*+ 
to 

(Kc) x0 + (GE) Yo + (KLE) z, + + (K4 + (Pl;,,)x,z,+(l;jr,) yozof 

-+ (F,o”) z(,~] dt, =_ w’ (a*) Al (t - to) + yl** (t) 

24, 7 - yl** (2,) / 0’ (a*) 7 

Here the functions Xi* and z,* are completely determined after the substitution of 

BO into (2.5). As a result we have found the following approximations: yo, 2, 

and zl, while the expression for Y1 is of form (2.5) wherein B, (0) = B,. The 

constant B, (E) must be arranged such that the succeeding approximation is periodic. 
And so on, 

The proposed scheme (2.2) enables us to find periodic functions with arbitrarily high 
index i, i.e., any formal approximation in powers of E of the periodic functions 

(2.1). In fact, suppose that this statement is valid for i = 0, 1, . . . , k - 1, 
i.e., 

Xh-, = x0 -I- EA,~+ A- E&, y/,_, := y,,* i- Bk-l -i- * EYfi-1 
1 

Zk-, = 2” + &2&l 

is a solution of the system of the (k - 1) st approximation, where the constant 
Bkml (E) has been found from the periodicity condition on the function ok = 20 $_ 

EA h i- ES,,* in which A k is an unknown parameter. The expressions for zk* 

and zk* are completely determined as a result of substituting Bk-i 

xk * = ’ [(f,,‘) zk* + (rhC, xk-1 + (jj,) Yk-1 + (f;~) zk-1 + s 
10 
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+ (h, Zf-1 + f* (h x8-1+ '?/k-l, zk-&[I dh 

zk* = H [(&a,“) xk-1 + (g+Ln) gk-1 + (gh8”) zk-1 + l/2 (&“) + 

% (ghrn) &-1 + H' (a*) ii&l+1 + g* (h, 5k-17yk-1? zk-lye)l 

Further, from the periodicity condition of the function yk* (t, A k, E) 

Yk* = 0’ (a*) Ak (t - to) + yk** (& 8) = 6~’ (a*) Al, (t - to) + 

t 

S[ 
d (a*) $k* + + 6f (a*) d-1 + (&) XC-1 + (Fh’) zk* + 

to 

(&OS) yk-1 + (&) zk-1 + + (F;) + (6) Zk-lzk-1 + 

(&,h)Yk-1Zk-l + +(&)z:-, + F* (b, xk-1, Yk-1, zk-l&)]& 

we can determine AR; and yk* 

Ah (E) = - yk** (T, e) / 0’ (u*) T, yk* (t, e) = yk** (t, e) - 
gk** (T, e) (t - to) / T 

To determine the parameter Bh, we should make use of the expression 

xk+l* (t, Bk, 8) 

4+1 = i fk+l (b 8) dt, + i {(rjc) Bk + 

(fh’) ‘;I [(&) Bk + &?* (i:v xkv yo* + Bk + eYke7 zkt e)] + 

(fih)(& fezk*)Bk +I* (h ~kl%* -t Bk + &Yk*! zky 8)) dh 

Ik+l @, e)=(fh’) H [(f%“) z/, + (&“) Yk + (,&“) zk + 1/Z (@“) + 

l/z (ghtn)Zk2 + H’ (a*) “kzkl + (taco) xk + (f$cn) (y,* t EYk*) + 

(fhr? zk + l/z (f@“) _’ (fakn) xkzk + (f+h? (Yo* + vk*)Zk + 

I/!2 (fh”) zkz 

The periodicity relation for function z&l is 

T 

p’ (‘?*) Bk =- i {fk+l (t, e) + fk* (f, Bkt 8) + 

e (j4h”) Bkzk* + (jh’) H k,* (6 Bk7 e)])dt 
(2.7) 

Here the functions fk* and g,* satisfy a Lipschitz condition in B, and E 

and vanish at e = 0. Thus. Bk (0) = Bo (see (2.6) ). Equation (2.7) complies 

with all the hypotheses of the existence theorem for the implicit function Bk (e) when 

e > 0 is sufficiently small. It can be constructed at each step by successive alproxi- 
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mations with respect to the small parameter 

e (fkh) Blrj-‘)+* + (fh’) H [gL* (t, BF-“, e)]) dt, i = 1,2, . . , k, 

Bf’ = B0 
(2.8) 

The successive approximations scheme for constructing the periodic solution 5, y, z 
can be justified on the basis of [4] and we shall not do it here. 

The result obtained is expressed by 
Theorem 2.1. When E > 0 is sufficiently small the perturbed system (1.1) 

admits of a resonance solutisn of the form (2.1) if 

a) conditions (l)-(6) of Sect. 1 are satisfied; 

b) a* and ‘p* are simple real roots of the corresponding equations. 
Different critical cases are possible when conditions (b) of Theorem 2.1 are not satis- 

fied . 

1) Equation (2.4) does not have real roots; then steady-state modes of form (2.1) 

cannot be realized in system (1.1) no matter how small E > 0 may be. 
2) Equation (2.4) has a multiple real root; in this case an additional investigation, 

based on Poincarg’s method [4], can be carried out for analytic gstems. It is well 
known that as a rule multiple roots lead to a splitting of the trajectories and to expan- 

sions in fractional powers of the parameter [5]. A successive approximations scheme 

has not been developed for this complicated case, 

3) Equation (2.4) is satisfied identically, i. e. , independently of 9; in this case 
motions of higher degree can occur [4], for which assertions with remarks (1) and (2), 

analogous to Theorem 2.1 are established on the basis of Poincari’s method. 
4) The frequency w = const, where o = nv / m; then the scheme developed 

above simplifies [4]. The defining equations are 

P (a, cp) = ! ((1.7 + (fh’) H [(&‘)I) GQ = 0 
0 

(2.9) 

The condition for the existence of a steady-state resonance mode is that the functional 
determinant det Jzdet (a (P, Q) / a(a*,rp*)) be nonzero. It should be noted 

that in actual problems the defining equations of type (2.4) or (2.9) can be constructed 

on the basis of the integrals of the initial system [Z]. 

8. Invectigotion of Lirpunov ctobllity. The stability of the solution 
constructed cannot be investigated on the basis of the zero -approximation system in 
e. To compute the characteristic indices it is necessary to set up the variational 

system by means of the substitutions 
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a = a (t, e) + u, -q = 9 (t, e) + v, h = h (t, e) + w 
It is obvious that when e=O the rest point is unstable for t2t,, since one groupof 
solutions corresponds to a two-fold zero characteristic index, i.e. , a complicated cri- 

tical case occurs [Z, 4,6], and the critical characteristic indices are of orders of a 

fractional Power ofe. The Floquet-Liapunov theory [6] is applicable to a variational 
system with periodic coefficients. On its basis we make the replacement 

U = ueat, V = veal, W = weat 

where U, V, w are Periodic functions of period T and o is the characteristic in- 
dex. The quantities sought for are determined from the system 

U’ = (fa’ - a) U + f+’ v + fh’W 
v’ = (w’ + F,’ ) u + (F+’ - a) v + F,,‘w 
w’ = (H’h + &‘) U + g+’ 2, + (H + g,’ - Jo> 0 

(3.1) 

We are required to find the value of a for which system (3.1) admits of a periodic 
solution. BY the successive approximations method [S] we can show that a = bo, + 

6’os + 0 (63), where 6 = f/E. u (t, E) = u0 + 6u, + e2u2 + 63~, (tl 8) 
and analogously for v and w. 

From the equations of the zero approximation in 6 it follows that uo z 0, w. E 0, 
and Vo = const. The periodicity condition on functions UI, VI, Wi leads to the 
expressions 

u1 = const, vi = const, alvo = 0’ (a*)u,, W1 = Cl 

Substituting ws = v,H [(g+,“)l into the equation for us leads to the relation 

a1 2 = w' (a*) P’ (cp*)/ T (3.2) 

In the approximation computed the crit?cal characteristic indices are pure imaginary 
when ais< . Their computation to within order E from the periodicity con- 

ditions on the zero approximation of the functions Us, us, Ws leads to the expression 

4=~TSI(fRr)+(i;h)Z)+(fd)0’(a*)w,* + 

(Fk) ; (Fjd zo + (F,,‘) wz*] dt 

wa* (t> = H r(g+c”)l, w3* (t) = HW (a*)23 / w' (a*) -t 

(gm") / 0.)' (a*> - w3*1 

(3.3) 

Theorem 3.1. The perturbed solution (2.1) of system (1.1) is asymptotically 
stable when z > 0 is sufficiently small, if 

a) or* < 0 is the necessary condition (see (3.2) ); 
b) a, < 0 (see (3.3) ) 

and is unstable if even one reverse inequality holds. 
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For the case 0 = const , considered in (4) in Sect. 2, the sufficient conditions 
for asymptotic stability are the requirements that the 
ratic equation det (J - Ja) = 0 be negative. 

In the special case of system (1. l), when vector h 
proportional to e) the quantities P (cp*) and a, 

real parts of both roots of the quad- 

is absent (the perturbing terms are 

have a simpler form [7] 

P+e$3 F-+&F) 

In many actual problems the stability conditions can be written out from the integrals 
of the initial unperturbed system. For example, for the nearly-conservative rotary 
system [83 2’ -/- Q (z) = EP ( v , 3, Z’, e), the defining relation (2.4) and the sta- t 
bility conditions are 

ycp, x. 5’ (x, a*), 0) dx = 0, x0* = 12 (a" - s Qd.W 

a) P’ (rp*) < 0, b) 7 (q/)$ <o 
0 

In the case a, = 0 it becomes necessary to compute the critical characteristic in- 
dices more exactly in the powers of 6, and that calls for greater smoothness of system 

(1.1). 

4, Example, We examine the problem of 
the steady -state oscillations and rotations in the 

plane of a system with three degrees of freedom, 

9 shown in Fig. 1. Here M is the mass of the found- 

\ 0 X 

big, 

ation in which an unbalanced rotor is located; m 

M lp” 

is the mass rotor, 1 isthearm, cp is the angu- 
\ lar deviation. The origin is located at point 0 

4 m 
at which the rotor spin axis 0’ is located when 

the system is in balance. We assume that the found- 
ation can accomplish only translational oscillatory 
motions with respect to the 2 - and y -axes, Then, 

Fig. 1 
the model’s equations of motion, with due regard to 
the periodic external forces and to viscous friction, 

can be written as 

(M + m) X” + mt (rp’ cos cp)’ + K,X + Q, (x, Y) = - B,x’ -I- 

F, (4 

(N + m) Y” + mt (rp’ sin cp)’ + R,Y + qr, (X, Y) = - BvY’ i- (4.1) 
F, (vt) 

mlav” + ml (X’ co9 cp + Y-sin cp)’ + mgl sin q=--B@’ - Tl (X’ Cos ‘p 5 
Y’ sin cp} + N (vt)j 
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Here X and Y are the Cartesian coordinates of point 0’; K, and Kv are the co- 
efficients of elasticity; Qr and Qar are nonlinear components whose expansions begin 
with quadratic terms; Bi and Bv are coefficients of viscous friction; F, and F, 
are periodic external forces; v is the frequency. Viscous frictional forces with co- 
efficients B and r, the periodic external moment N and the gravitational mo- 
ment (g is the free-fall acceleration) act on the rotor. We assume that all the system 
parameters are constants. 

Below we examine the case, being of practical interest, of a spinning rotor. We as- 
sume that the frequency v of the external force, of the order of the natural frequen- 

cies of the oscillations of the foundation, fastened viscoelastically, is much greater 

that the characteristic frequency of oscillations of the rotor in the gravitational force 

field l/g/ i.e. , g / Iv2 - E. Then under certain natural assumptions the rotor’s 
steady-state motion is close to an uniform rotation with velocity o - V, while the 
oscillations of the foundation relative to the equilibrium position take place with a 

frequency - v and an amplitude of the order of e. With due regard to the assumflions 
mentioned, whose physical sense is clear, we further introduce dimensionless variables 
and parameters of the system 

m 
-=e@l, s=vt, 

R 
M + m 

--eeooa (oo- 1) Iv” - 

X Y Q,, ,iX, Y) 
-_=x 1 ’ r=y* (‘M+m)lv2 = ‘lx, !, (2. 1/j 

K x, u B 

(itI + m) v= = O:, u’ (M ;:, v = fix, 1/’ 

5, ,, W) 
(M + m) 1v= = efx, II 6) 

B 
- =efi, 

r NW 
mlv & = w - = ep (s) ml%2 

A division of the first two equations in (4.1) by (M + m) Zv2, of the third equation 
by ml”v2 , and the use of the notation adopted after the system has been reduced to 
a normal form (solvable relative to the leading (second) derivatives with respect to the 
“fast dimensionless time” s) enables us right away to write it in the form of system 
(1.1). The variables ‘2 and v and their derivatives with respect to s: 2’ = u and y’ = v 

form a stable fourth-order vector h , while as the phase Ip we can take the angula 
variable cp, whose rotation velocity Cp’ = 0 is the quasi-static variable a 1 in the 

notation of Sect. 1. As a result we obtain a system of six equations of form (1.1) 

0’ = f, cp’ = Co (’ f d I ds) 

I’ = u, 24’ = - fl,u - ox25 - qr + e (fx + o2 sin cp - f cos cp) 
y’ = v, V’ = - p,v - 0~5.4 - qy + e (jv - a2 cos cp - f sin cp) 4.2) 

f 5s f (s, 0, cp, 2, u, Y, v, e) = 

co9 ql (1 - e)-l (&p + ox21 + qx - efr) + sin cp (1 - e)-l (I&v + 

q/2Y + Py - efv) + e (1 - e)-1 [p - 002 sin ‘p - j3@ - y (U Cos ‘p + 
v sin cp)] 
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(the function F E 0 and the matrix H is constant). 
Let fr = fxo sin (s -b 6,) and fv =I- fyo sm (s -I- 6,); then in the first appoximation 

the stable elements z and y are sums of two harmonic functions of s with fre- 
quencies 1 and n / m of the form ( r is the phase constant) 

x = eA, sin (s + ax) + eE, sin &+z+t+ 
.m 

A, = f,, [(ox2 - II2 + 8x2l-“‘, B, = (31(OxL $)z+&]-I’* 

The expression for y is obtained by replacing the subscri# 2 by Y. The substi- 
tution of functions r. and y and of their derivatives II and v into the first 
equation of (4.2) leads to an equation of type (2.4) for the determination of the phase 
constant, from which it follows that a fundamental resonance mode can be realized in 

the system, i.e., n=m=1 

2P (z) z r sin (z + 0) + e = 0, Z* = T~,~ = - Arcsin c/r - 0 

ra 3 2 + b2 = (&As cos a, + w~A, sin a, - fro cos 6, - &,A&navf 

o,2A,‘cos a, - f do cos 8,)s + (6, Ax sin ax - m2Ax ~0s a, + f,,, ~0s 6, + 
&A, cos a, + ml;LAV sin czar - f ~* sin 8,)2 

t4. 3) 

c = (@, cos z, + ax2 sin TX) B, + (@, sin zy - ou2 cos TV) B, +po - @ 

2x 

s 
~(4ds 

0 

Equation (4.3) admits of two simple real roots 9 = ‘tl,2 in the interval 7 e [O, 2nl 
if]clrl <l,whichweassume. Then P’ (‘t*) # 0 and all the conditions in Theo- 
rem 2.1 on the existence and uniqueness of a steady-state resonance solution correspond- 
ing to each root rl,a are satisfied. This solution can be constructed to any degree 
of accuracy by a series expansion or by successive approximations with respect to e 
using the procedure in Sect. 2. 

From the form of function P (r), in (4.3) it follows that for one of the roots, say 
z* = T1r P’ (zJ < 0, while for the other, P’ (‘rz) > 0. On the basis of Theorem 3.1 
the steady-state mode corresponding to root rz is unstable, The motion correspond- 

ing to root r~ is stable and, moreover, asymptoticaliy stable when E > CJ is suffic- 
iently small, if @ > I/& 

aa- = 2 + rx-l [Z (COAX - 1) - fix”], b, = - p,rx-l fox2 + 1) 
rx = (ax2 - 11% + &” 

ay = - fl,r,-l (w!,~ i l), h, == -2 - rum1 I2 (WY2 - 1) - fig21 
rll = (WY” - 1)” + p,s 
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It should be noted that the steady-state mode can take place if at least one of the 
quantities fxO or fllo is nonzero. Otherwise, spinning oscillatory motions cannot be 
realized in the system when PO i 60 However, if Ilo = p the system (4.2) can 

admit of steady-state resonance motions of higher degrees [4]. This case requres ad- 
ditional investigation since P (t) G 0 (see (3) in Sect. 2). 

The author thanks M.L. Lidov for pointing out the need of analyzing systems of type 

(1.1) with estimates (1.2). 

REFERENCES 

1. volosov, V. M. and Morgunov, B. I. , The Averaging Method in the 
Theory of Nonlinear Oscillatory Systems. Moscow, Izd. Moskovsk.Gos. Univ. , 
1971. 

2. Akulenko, L. D., On the oscillatory and rotational resonant motions. 

PMM Vol. 32, N” 2, 1968. 
3. Mitropol’skii, Iu. A. and Lykova, 0. B. , Integral Manifolds in 

Mechanics. Moscow, “Nauka” , 1973. 

4. Malkin, I. G., Certain Problems in the Theory of Nonlinear Oscillations. 
Moscow, Gostekhizdat , 1956, 

5. Vainberg, M. M. and Trenogin, V. A., Theory of the Branching of 

the Solutions of Nonlinear Equations. Moscow, “Nauka” , 1969. 

6. Malkin, I. G., Theory of Stability of Motion. Moscow,“Nauka” , 1966. 

7. Akulenko, L. D., On resonance in nonlinear systems with one degree of 
freedom, (English Translation) Pergamon Press Journal Corn@. Math. , math. 

Phys. vol. 6, Nn 6, 1966. 
8. Akulenko, L. D., and Volosov, V. M. , On resonance in a rotary 

system. Vestn, Moskolsk. Gos. Univ. , Ser. Matem. Mekhan. , Ne 1, 1967. 

Translated by N. H. C. 


