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A perturbed rotary-oscillatory system with many degrees of freedom, sub-

jected to periodic external forces is investigated. By successive approxi-
mations with respect to a small parameter a resonance solution on the in-
finite time interval is constructed and its Liapunov stability is considered.
Calculations for an actual example of a system with three degrees of free-

dom simulating the influence of a spinning unbalanced rotor on the found-

ation, are carried out.

1, Statement of the problem, We examine a nonlinear system lead-
ing to equations with rotating phase of the form

a =7t a1, e€)
Y = o (@) +F (a0 he)
Wo=H@h+ g, a § I, €

(L1

Here t & lt,, o) isthe independent variable (time), a =G, isquasi-static
variable (energy or amplitude), VP & [Py, 00) is the phase of the oscillations or of
the rotations, k= (s, . . ., fiy) is a stable vector, A & Gy, where G, is some
neighbourhood of the origin, & >> (  is a small parameter, & & 10, go]. It is
assumed that the right-hand side of system (1. 1) satisfied the conditions:
1) it is defined and real in the region indicated:
2) the functions 7/, F and g are periodicin ¢ and 1 with periods T and
2m respectively,
3) the frequency ® (a) is nonnegative, and for certain relatively prime numbers
mand n there exists the solution a* of the equation me = nv (m > 1), where
v =12n/1T is the frequency of the external forces;

4) H (a*) is a stable matrix, i.e.,, all r roots of the equation A (A) =
det (H (a*) — IL) = 0, where [ is the unit matrix, satisfy the condition
Re Ay (@a*) Ao <<O (A =1, ..., 7)

5) it is continuous in t; in the region being examined the functions f, w, F and

g have partial derivatives upto second order with respect to the rest of the arguments,

while matrix H has a first-order partial derivative, all of which satisfy Lipschitz
conditions with constants not depending on ¢

6) the estimates
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= - o = 2 L
LHE=0k]+ el g=00k}+ el .2

are valid.

The nonlinear system z° = X (x) + ¢f (t, z,€), x isa vector, reduces to
a system of form (1.1) with estimates of a more special form for the right-hand side;
[, F,g =0(|h|®+ |e |)=isavector under the assumption that the generating
system admits of a stable two-parameter family of rotary-oscillatory motions {}-3].
The author investigated such a system in [2]. Systems of type (1.1) were investigated
in [1] by the averaging method and in [3] by the method of local integral manifolds.
Here we pose and solve the problem of constructing individual resonance solutions of
system (1.1) with estimates (1. 2)on an unbounded time interval by the constructive
scheme of successive approximations in the small parameter method [4] and we invest-
igate the Liapunov stability of these solutions.

2. Construction of a resonance solution, A steady-state reson-
ance solution of system (L. 1) of form m / n is constructed as the sum of a generating
motion and a perturbing motion [2]

a=a*+ex(te), v=(n/mv(t—1t)+¢+eyle)

2.1
h = ez (¢, €) 29
Here, Z, Y, 2 are unknown periodic functions of { of period T == mt, ¢ isa
parameter (the phase constant), The substitution of (2. 1) into (1.1) leads to a quasi-
linear system in , Y, 2, whose periodic solution is constructed by successive approxi-
mations of powers of & [ 4]

T = () + () 2w + & [(adz: + Goelys + (o) 20 +
+ 1/2 (fﬁzﬂ) + (fah) Z;2; + (f‘bh)yizi + 1/2( h’”) zi2 + f* (t: Ziy ¥iy 2, 8)]

y%+1 = o' (@*) iy + (Fe') + (Fp') 2141 1 & [1/2(0””(‘1*) z? +

+ (Foe) 2; + (Fae) yi + (Fre)ze + Yo (Fe') + (Fan) x:2; + (2.2)
+ (Fon) yiz: + s (Frd) 22 + F* (¢, xi, Yis 20, e)l

zin = H (a*) 24, + (g') + & [(gae) z; + (gue) Yi + (8ne) 2 +

+ 1, (ge”) -+ Vo (g) 22 + H (a*) zi2; + g* (6,34, ¥i,24,8)]
(=0, 1,2.)

Here an expression of the type (f¢)) signifies that the derivatives are computed for
&£ = 0 and for the generating solution; & = a*, Y = (n/ m) v (t — Lo} + VYo,
n=0; f*, F*, g* are known functions satisfying Lipschitz conditions in the vari-

ables x, y, z, & with constants independent of ¢ and vanishing identically at
e =0.

It should be noted that the mentioned quasi-linear system of equations for z, y, z
has the form of system (2. 2) in which the indices i+ 1 and i have been dropped.
In fact, after the substitution of expressions (2.1) into (1.1), the expansion with respect
to e. and the division by &=~ 0 , equations of form (2. 2) follow as a consequence
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of the assumptions made in (5) of Sect. 1 concerning the smoothness of the right-hand
sides and on the basis of estimates (1. 2). When the functions { and F have a quad-
ratic estimate with respect to & [2] as the function g does (see (1.2) ), the form
of system (2. 2) is simpler since the derivatives of type (73), (fuy), (fy,) 2nd the ana-
logous ones for function F identically equal zero, Integration at each step of the
variables =;,;, and y;,; is carried out explicitly and independently of the vector
ki The investigation of the stability of the resonance solution (2.1) simplifies
considerably (in comparison the one in Sect. 3 below), since it turns out that the vari-
able » has no influence on the stability in the first approximation being examined
[21.
As the zero approximation we take the periodic solution of system (2.2) when
e=20
t
fo=2g* (L @)= Hi(g), HI1=\ expH (a*)(t—1)fdt

—00
t

2o = Ay +  1(1) + (W) 2] Aty = 4o + 2% (¢, @)

1]

(2.3)

Yo = By + o' (a*) Ao (t — to) +
t
U107 (@) 20* + (F) + (Fa) zaldty = By + yo* (1, 9)
te

Here ¢, Ao and B, are parameters selected so that the resulting solution is periodic,
From the periodicity condition on z,* follows an equation in the parameter @

T
P@ = [ 1) + U H (g 1dt =0 (2.9)
0

If ©*(mod 2n / m) is a real root of the transcendental Eq. (2,4), then the function
xo is periodic for any A4,, including

! T
Ay = —[0'@) T | (@*)2* + (F) + (Fy) 2] dt (o (a*)==0)

IS

0
For the Ao indicated the function y, is periodic for any B, . As a result the
periodic functions z, and gz, are completely determined, while the parameter

B, is found from the conditions of the periodicity of the first approximation resulting
from (2,2) when f* =0, F*=0, g* =0

2 = Zo -+ E2,** + eBoH [(ghe)] = 20 + e2,* (2.5)

14

t
a1 =@+ edi + &\ /1 (t2)dty + B, § [(Joe) + (fon) 20 +

ty to

(I H [(g;s)] dt, = x5 3 Ay + e *
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Yy = yo* + B, + ey, *

B = H(8) 70+ (8ac")10* + (8120 + Y (€6) + Yo (1 e? +
H' (a*) ZoZy)

= (fhl) z, ** + (fnb‘.") Zy + (ft‘as”) yo* -+ (/he”-) zy + 1/2 (/ezﬂ) -+
(Tar") ZoZo 4+ (Fon") Yo* 20 + Ya (Fr") 202

The parameter B, is determined from the periodicity condition on Z; under the
condition that @* is a simple root of (2, 4)
T
— _1._ / (t) dt
Plgp*) )1 (2.6)

0

B, =
The constant A, is found from an analogous relation for ¥:*

t
¥ = o' (@%) A (= to) + ([0 (@) 2% + - (@) 70? + (Fi)z*+

to

(Fae) 2 4 (Fie) Yo + (Fie) 20 -+ =5 (Fer) 4 (Fan)zozo-+(Fun) Yozo+-
1‘ ” ’
A () 2| dty = ' @) Ay (£ — ) + 3% (1)
Ay = —y** (1)) o (a*) T

Here the functions 2,* and z;* are completely determined after the substitution of
B, into(2.5). As aresult we have found the following approximations; ¥, I,

and 2;, while the expression for Y1 is of form (2.5) wherein B, (0) = B,.  The
constant B, (&) must be arranged such that the succeeding approximation is periodic.
And so on,

The proposed scheme (2. 2) enables us to find periodic functions with arbitrarily high
index 7, i.e., any formal approximation in powers of ¢ of the periodic functions
(2.1), In fact, suppose that this statement is valid for { = 0,1, ..., &k — 1,

i.e.,

Tpoy = o + €Ay 4 Xy Ypor = Yo + By - Syk—1
Zp_1 = Z¢ T €23
is a solution of the system of the (4 — 1) st approximation, where the constant
B,_, (e) hasbeen found from the periodicity condition on the function =, = x, +

€A, + erp* inwhich A, isanunknown parameter. The expressions for r,*
and z,* are completely determined as a result of substituting B,

!
2 =\ W) % (o) Tt + (foe) Yier + (o) s +
t

L]

—

= (fe') + (f:m) L1241 + (/uh) Yh-135-1 +
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1 -
5 (f13) Zhey + 1* (t1) Z-1s Y1 Zk—13):l dt,

¥ =H [(ga;”) Tp-1 + (8oe") Yn-1 + (gne") Zp—1 + Y2 (ges”) +
Yy (grs") 21 + H' (a*) Zp_a2p-r + g* (L, Tpp¥n-ry Zr-18)]

Further, from the periodicity condition of the function y,* (t, A, €)

Ye* = O (a%) A (t — bo) + Y (1, 8) = 0 (a%) Ay (t — to) +
t

([0 @) 0 + 50" (@M ks + (Fa 2 + (F) 2 +

to

" . 1 - o
(Fye) Y + (Fre) 251 + = (Fer) + (Fan) Tx1 25 +
” 1
(Fyn) Y1251 + - (Fm) Zky + F* (ty, Loy, Yeas zk—l’e):] dt,

we can determine 4 p, and yp*

Ay (8) = —yp** (T, 8) /0" (@) T, yp* (t, &) = yu** (¢, &) —
** (T, e)(t—to)/ T

To determine the parameter B, we should make use of the expression
Tper* (2, By, €)
t t

x;c+1 = S [rn (tr, €) Aty + S {(f¢€) By +
to o
(fhl) H [(g;a) By 4-g* (t1 Ty, Yo + By + e *®, 25, €)] +
(For) (29 -+ e2,*) B, - [* (ty, Ze, Yo* + By + eyi*, 24, £)} dty

Trer @ &)=(fn') H [(gae") 21 + (84e”) Yr + (8ne”) zn + Y2 (8e2”) +
Yo (gne") 22® + H' (a*) cpzg] + (foe") Tn + (Fue”) (Yo* + ey,*) +
(Fre") 20 + Yo (fee") = (fan") 2p2y + (fon") (yo* + eyp*)z, +
s (fnd") 222

The periodicity relation for function Zz+1is
T

P (@*) By=—\ {fas(t, &) + /u* (t, Bu ®) +
0

e (for”) Brzp* + (fn') H lgn* (¢, By, €)l}dt

2.7

Here the functions f,* and g,* satisfy a Lipschitz conditionin B, and e

and vanish at & = 0. Thus, B, (0) = B, (see(2.6)). Equation (2.7) complies
with all the hypotheses of the existence theorem for the implicit function B, (¢) when
e > 0 issufficiently small, It can be constructed at each step by successive approxi-
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mations with respect to the small parameter

BY (&) = — prics; &{f}m(t &)+ /i (t, B, ) +
‘e (fon) BE Va* - (f) H [g* (1, BV, o)1} de, j=1,2,.. .k,
BY _ B (2.8)

The successive approximations scheme for constructing the periodic solution z, y, z
can be justified on the basis of [4] and we shall not do it here.

The result obtained is expressed by

Theorem 2,1. When & > 0 is sufficiently small the perturbed system (1.1)
admits of a resonance solutien of the form (2.1) if

a) conditions (1)~(6) of Sect, 1 are satisfied;

b) a* and @* are simple real roots of the corresponding equations,

Different critical cases are possible when conditions (b) of Theorem 2.1 are not satis-
fied.

1) Equation (2.4) does not have real roots; then steady-state modes of form (2.1)
cannot be realized in system (1.1) no matter how small & > 0 may be,

2) Equation (2,4) has a multiple real root; in this case an additional investigation,
based on Poincaré's method [4], can be carried out for analytic ystems, It is well
known that as a rule multiple roots lead to a splitting of the trajectories and to expan-
sions in fractional powers of the parameter [5]. A successive approximations scheme
has not been developed for this complicated case,

3) Equation (2.4) is satisfied identically, i.e., independently of ¢; in this case
motions of higher degree can occur [4], for which assertions with remarks (1) and (2),
analogous to Theorem 2,1 are established on the basis of Poincaré's method.

4) The frequency ® = const, where ® = nv / m; then the scheme developed
above simplifies {4]. The defining equations are

{(J) + (fh,) H [(g:/)]} dt =0

T
@)=\

T (2.9)
Q(a,9) = 5{(&') + (Fx') H [(g:)]}dt = 0

The condition for the existence of a steady-state resonance mode is that the functional
determinant det J=det (3 (P, Q) / #(a*,¢*)) be nonzero, It should be noted
that in actual problems the defining equations of type (2.4) or (2. 9) can be constructed
on the basis of the integrals of the initial system [2].

3. Investigation of Liapunov stability, The stability of the solution
constructed cannot be investigated on the basis of the zero -approximation system in
&. To compute the characteristic indices it is necessary to set up the variational
system by means of the substitutions
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—a(t,e)+ U, v=v(e)+V,h="h(t,e) +W

It is obvious that when g=() the rest point is unstable for 122t, since one group of
solutions corresponds to a fwo-fold zero characteristic index, i.e,, a complicated cri-
tical cage occurs [2,4, 6], and the critical characteristic indices are of orders of a
fractional power of €. The Floquet-Liapunov theory [6] is applicable to a variational
system with periodic coefficients, On its basis we make the replacement

U=uet, V=novet, W = we!

where u, v, w are periodic functions of period T and o is the characteristic in-
dex. The quantities sought for are determined from the system

w=(f, —u+f o+ fi'w

v =(0 +F)u+ (F’ —a)v+ Fi'w .1
w = (Hh+g)u+g' vt H+g —Ioo

We are required to find the value of @ for which system (3.1) admits of a periodic

solution, By the successive approximations method [6] we can show that @ = §q, +

820, + O (8%), where § = Ve, u (t, €) = uo + Su, + 8%uy + 8%u, (¢, €)

and analogously for » and w.

From the equations of the zero approximation in 8 it follows that 4o = 0, w, = 0,
and Vo = const. The periodicity condition on functions U1, %1, W1 leads to the
expressions

u, = const, v, = const, a;p, = " (a*)u, w; =0
Substituting w, = v, H [(gy")] inte the equation for u, leads to the relation
a’=0 (@) P (p*)/ T (3.2)
In the approximation computed the crittcal characteristic indices are pure imaginary

when @,2<C 0 . Their computation to within order € from the periodicity con-
ditions on the zero approximation of the functions s, V3, W3 leads to the expression

T
@ = g \ (o) + (fan) 20 + (1) & (@) ws* +

(Fue) + (Fon) 20 + (Fr') wy*] dt (3.3)

wy* (t) = H l(gee")], ws* (t) = HIH' (a*)z, / 0" (a*) +
(8ae") | 0 (a*) — w,*]

Theorem 3.1, The perturbed solution (2. 1) of system (1,1) is asymptotically
stable when € > 0 is sufficiently small, if

a) a,®* << 0 is the necessary condition (see (3.2));

b) a; << 0 (see (3.3))

and is unstable if even one reverse inequality holds,
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For the case ® = const , considered in (4) in Sect. 2, the sufficient conditions
for asymptotic stability are the requiremnents that the real parts of both roots of the quad-
ratic equation det {(J - fa) = 0  be negative,

In the special case of system (1.1), when vector 7 is absent (the perturbing terms are
proportional to &) the quantities P (¢*) and a; have a simder form [7]

T

T
P@) = \dt, o= \1(t)+(FNNdt (f—>ef, F—eF)

o

In many actual problems the stability conditions can be written out from the integrals
of the initial unperturbed system, For example, for the nearly-conservative rotary
system [8): " + Q (z) = eg (v, z, &', €), the defining relation (2. 4) and the sta-
bility conditions are

2n
dx

P(9) = §9(Wv Zor s 0) Zo'dt = S q<vgm —
0 0

vQ, z. o (z, a*), 0) dx = 0, xo = [2(a* — S Qdzx))h
2n
) Pt <0, ) { (@5 <0

0

In the case @2 = O it becomes necessary to compute the critical characteristic in-
dices more exactly in the powers of §, and that calls for greater smoothness of system
..

4, Example. We examine the problem of
the steady -state oscillations and rotations in the
plane of a system with three degrees of freedom,
shown in Fig. 1. Here M is the mass of the found~
ation in which an unbalanced rotor is located; m
M is the mass rotor, ! isthe arm, ¢ is the angu-

lar deviation. The origin is located at point 0
at which the rotor spin axis 0’ is located when
the system is in balance. We assume that the found-
ation can accomplish only translational oscillatory
motions with respect to the = - and y -~axes. Then,
the model’s equations of motion, with due regard to
the periodic external forces and to viscous friction,

I

Fig. 1

can be written as

(M + m) X"+ mi{g cosg) + K, X + Q. (X,¥)= —B, X"+
Fy (vt)

(M4 m) Y 4+ ml(9 sin @) + K, ¥ + Q, (X, Y) = — B,Y’ -+ (4.1
Fy (vt)

mitp™ + ml (X" cos @ + Y sin 9)" + mgl sin ¢==—Blg’ — T (X" cos ¢ +
Y’ sin @} + N (vt}
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Here X and Y are the Cartesian coordinates of point 0'; Kx and Ky are the co-
efficients of elasticity; Q- and @, are nonlinear components whose expansions begin
with quadratic terms; B, and B, are coefficients of viscous friction; F, and F,
are periodic external forces; v is the frequency. Viscous frictional forces with co-
efficients B and I, the periodic external moment N  and the gravitational mo-
ment (g is the free-fall acceleration) act on the rotor. We assume that all the system
parameters are constants.

Below we examine the case, being of practical interest, of a spinning rotor. We as-
sume that the frequency v  of the external force, of the order of the natural frequen-
cies of the oscillations of the foundation, fastened viscoelastically, is much greater
that the characteristic frequency of oscillations of the rotor in the gravitational force
field Vm i.e., g/ Iv? ~ g. Then under certain natural assumptions the rotor's
steady-state motion is close to an uniform rotation with velocity © ~ v, while the
oscillations of the foundation relative to the equilibrium position take place with a
frequency ~ v and an amplitude of the order of &. With due regard to the assumptions
mentioned, whose physical sense is clear, we further introduce dimensionless variables
and parameters of the system

M_,:[L-F=E<1's="t’ l—vg;:xzoo,,2 (W ~ 1)
X Y Qy, y (X, Y)
T =% T=V GxmiE =@
K y o, By 4 _ Fye y0t) e ”
MM Fmyv2= % v (M4 m)v =By T fm)ive = f, v

B r N (vt)
mv = oy = Tppw =)

A division of the first two equations in (4.1) by (M + m) Iv?, of the third equation
by mi*? |, and the use of the notation adopted after the system has been reduced to
a normal form (solvable relative to the leading (second) derivatives with respect to the
" fast dimensionless time" s) enables us right away to write it in the form of system
(1.1), The variables = and v and their derivatives with respect to s: 2’ = v and ¥’ = v
form a stable fourth-order vector 2 , while as the phase ¢ we can take the angula
variable @, whose rotation velocity ® = @ is the quasi-static variable ¢! in the
notation of Sect, 1, As a result we obtain a system of six equations of form (1.1)

I3

o =f ¢ =0 (=d/ds)
2= u, u = —PBeu— 0l —q,+ &(fx+ o?sing — fcoso)
y =, v’=—ﬁyv—myzy—qy—i—e(jy-—mzcosqp—fsin(p) 4.2)

=10, ¢z u 90 g) =
cos @ (4 — eyt (Bu+ o7+ g — &fx) +sing (1 —e)t (Byv +
o+ g, —efy) +e (1 —e)t [n— o sin ¢ — ﬁm—y(ucos.q)—;—]
v sin @
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(the function F =0  and the matrix H is constant).

Let fx = fxo8in (s + 8:) and f, = fyosin (s + 8); then in the first apgoximation
the stable elements % and y  are sums of two harmonic functions of s with fre-
quencies 1and n/m of the form ( t  is the phase constant)

r ==eAdy,sin{s + ay) +ansin(-7%-s +1+1:x)
2 2\2 2 1Yz
A=y (02— p 4 80 By = (2] (00— ) 40225
n 2 =1
a,=arctg (B, (1 —o !+ 8,, T, =arctg [6::: w <-:Tz- — mx2) :{

The expression for y is obtained by replacing the subscrigt » by y. The substi-
tution of functions z. and y  and of their derivatives « and v  into the first
equation of (4. 2) leads to an equation of type (2.4) for the determination of the phase
constant, from which it follows that a fundamental resonance mode can be realized in
the system, i.e., n=m=1
2P(y=rsin(t+6)+c=0, 1* =1, ,= — Arcsin or — 6
rP==a? + b2 = (Pxdx cOS Oy + wid, sin @y — fyy cOS 8, — B A sina,+
w24 cosa, —f cosd P+ (B A, sina, — 0,24 cosa +f, cosd, +
B4, cosa, + o 24, sina, —f,  sind )
¢=(B cosv +o?sint)B +(B,sint,—orcost)B, +p,—p

oan

(4.3)

a 1
tg® =~ uo=3;{S B (s)ds
0

Equation (4.3) admits of two simple real roots T* =T, , in the interval T & [0, 2a]
if|¢/r| < 1, which we assume. Then P’ (1*)== 0 and all the conditions in Theo-
rem 2.1 on the existence and uniqueness of a steady-state resonance solution correspond-
ing to each root Ty,5  are satisfied. This solution can be constructed to any degree
of accuracy by a series expansion or by successive approximations with respect to &
using the procedure in Secf, 2,

From the form of function P (7}, in (4.3) it follows that for one of the roots, say
T =T, P’ (1) < 0, while for the other, P’ (1,) > 0. On the basis of Theorem 3,1
the steady-state mode corresponding toroot T, isunstable, The motion correspond-
ing to root Ty is stable and, moreover, asymptotically stable when &> ¢ is suffic-
iently small, if B >1/,8

6= r,1 {ﬁxax + [0,? (0, — 1) 4+ PPl by + By (0,2 — 1)} +
ryt {loy? (0,2 — 1) + B*l ¢y + Byby + By (@)° — 0}

@ =2+ 7 2 (0, — 1) — Bl b = — Parg”t (@7 + 1)
re = (0,2 — 1)2 4+ B2
ay = —f,r, o2+ 1), b, =-2—r"12(,—1)— B,°l

ry = (@ — D+ B,
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It should be noted that the steady-state mode can take place if at least one of the
quantities fxo or fy, is nonzero. Otherwise, spinning oscillatory motions cannot be
realized in the system when W, PB- However, if W= B the system (4.2) can
admit of steady-state resonance motions of higher degrees [4]. This case requres ad-
ditional investigation since P (¥} =0 (see (3) in Sect. 2).

The author thanks M.L. Lidov for pointing out the need of analyzing systems of type
(1.1) with estimates (1. 2).
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